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COMPLETE CONFLICT CONTROLLABILITY OF QUASILINEAR PROCESSES* 

A.A. BELOUSOV and A.A. CHIKRII 

The problem of guaranteed arrival of the trajectory of a quasilinear 
conflict-controlled process (CCP) to a terminal set from any initial 
position is investigated. The solving function method /l-3/ is used to 
derive the sufficient conditions of solvability of the problem. The 
results are illustrated with some examples. 

CCP controllability has been very little studied; only a small 
number of references can be cited, in particular /4, 5/. 

1. A CCP is defined by the quasilinear differential equation 

z' = AZ. + 'P (u, u), z E R", u E u, u E v (1.1) 

where II and V are non-empty compact sets in finite-dimensional spaces and 'p (u, v) is a 
function jointly continuous in all its variables. The terminal set has the form M* = M+ W, 
where M" is a linear subspace of R" and M is a compactum in the orthogonal complement L of 
M". 

We say that the CCP (1.1) is completely controllable if for any initial position z0 E R" 
there exists a time Z'(z")< 00 and a measurable function 

u (t) = u (z", Vt (.)) E u (v1 (.) = {u (s) E v: s E [O, tl)) 

such that the solution of Eq.(l.l) reaches the set hf* not later than the time T (zO) for any 
measurable function v(t)= V, t E [O, T(z")]. 

Denote by n the orthogonal projection operator from R" to L. 

COnditiOn 1'. A number a>0 exists such that IIne*'II< a for all 12 0. 
We define the multivalued mappings 

@ (t, z, v) = ne-4(*-r) ‘P (u, v) - M (t, 4, Q, (t, 4 =,,n,” (t, 7, v) (1.2) 

where M(.) is some multivalued mapping R x R+2L. 

Condition 2'. A compact-valued mapping M(t, 7) exists, measurable with respect to 'c, 
such that 

'1) 0 E Q (t, 7), Vt > z > 0 

3) A number 11>U exists such that 

! IlM(t,7)lldz-spIL, Yt>O; IIM@,~)ll= max llmll 
medu. %:) 

Remark 1. If M is a convex compactum, 
can be sought in the form 

then an appropriate compact-valued mapping M (t, 7) 

tion such that 
o(t,r).M /2, 3/, where o(t,r) is a non-negative r-measurable func- 

This multivalued mapping automatically satisfies parts 2 and 3 of Condition 20. 
If Conditon 2' is satisfied, then the function 

p (t, 7, v, z) = max {p > 0: p'z E 0 (t. 7, v)). t > x 2 0, 2 E 15, z f 0 
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is defined (the inverse of the Minkowski functional @(t, r, u), Let 

We know /6/ that for any matrix A there exists a decomposition of the space H" into a 
direct sum of linear subspaces invariant with respect to A which correspond to the eigenvalues 
with positive, zero, and negative real parts respectively: R"=R_ + R, + K. 

In the subspace R,, we can isolate the subspace K, spanned by the eigenvectors that 
correspond to eigenvalues with zero real part. Note that the operator @t is bounded uni- 
formly in t>O on the invariant subspace R, -t R-, and Condition lo implies the inclusion 
R+cM". 

Put S = {ZE L: (Iz(I = I}, D = {z E L: lIzI/ < I}, 8, = S 9 nR,. 

Condition 3O. Numbers E >O, 0>0 exist such that the set 

is non-empty and unbounded, and 

sup inf cc(t,z, s)dr = 00 5 GT(E, 8) Es,; (1.4) 

If S, = 0 (i.e., R, c M"), then we formally assume that equality (1.4) holds. 

Condition 4'. 

Ii y_iup inf \ a (t, T, s) dt > 0 
Es; 

Theorem 1. If the CCP (1.1) satisfies Conditions l", 2", and 3", then it is completely 

controllable. 

Proof. For any initial position Z'E R", we have the unique decomposition z" = z+'+ zoo + 

Z-O, where z+' ER,, zoo E R,, 2-O E R_. 
By the definition of z_' there exists a time T, = T,(z_")( 00 such that T, > 0 and 

11 ne%" II < E for all t )/ I’,. By Condition 3O, there exists a time T( CO such that T > T, 
and 

where n is the number 
trajectory of the CCP 
this statement. 

Put 11, = neATzEO, 

have 

from Condition 2". This T = T(z") is the guaranteed arrival time of the 

(1.1) in the terminal set M*from the initial position z'. Let us prove 

E = +,O,-. From the definition of T,(z_") and condition (1.5) we 

For any SES and t>T.>O we have the bounds 

a (t, T, s) < max 11 neA(‘-Q cp (u, U) - m 11 < 
“CG”, VE”. rnEM(f, T) 

11 nea(t-r) l/II cp (up V) II + II 44 (t7 7) II 

Therefore for all SES and t> 1, T 

(1.7) 



From this bound and condition (1.6) we obtain 

Using the obvious identity ti(T, *,kZ,V) p P(T,r, %n) (for all 
z#O, vE V) and assuming that i&$0 and IJ_pO, we obtain from 

i a(X,2,--KI,)dz>i 
T, 
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n>o,x>r7o,ZEL, 
(1.7) and (1.8) 

For an arbitrary measurable function u(b)E V choose the 
function m(t)EM(T,t) (tE [O, T]) from the system of equations 

control u(t)E U and the 

1 
p fT* fs - If_, v @)) c RI, t E to, %I 

z~t+(~-~) g, (24. (4, v (4) - m It) = p (T, t, - II,, v (1)) (- II,), t E [Xl, 0,] (1.11) 

0, t ~(8~~ x1) u (4, Ti 

where the times 8r and B,,whioh exist by inequalities 11.9) and (1.101, are determined from 
the conditions 

By the Filippov-Kasten theorem /I/, the system of Eqs.(l.ll) is solvable in the class 
of measurable functions u(t)E u, m(t)EM(T,t), tEfO,T), 

Note that from Condition 1" we obtain n, =O. 
Choosing the measurable control u (QE U (tEfO,TI) from the system (1.111, we obtain 

To complete the proof of the theorem, note that if Tli_ = 0, then the measurable control 
11 (1) E u tt E IO, Tl) should be chosen from the equation 

and if I&=0, then it should be chosen from the equation 

neA(T-tt rq (u (t), v(t)) - m(t) = 
i 

p (X, t, - IL, v @)I t- fl_), t E IO, 0,] 
o 

, t E (f-4, T 1 

The theorem is proved for this Case in the,same way as (1.12). 

CoroZZary 1. If Conditions 2" and 3"are satisfied, the trajectory of the CCP (1.1) can 
be taken to the terminal set from any initial position z"E& u R-s 

Proof. If 20ERr. then there exists a number d>O such that ~JW%"~ gd for all t > 0. 
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By Condition 3O, there exists a time T such that 

a (T, t. s) dr > d 

If z0 E R_, then there exists a time T>@ such that ]/IlU<e and 

Thus, in either case there is a time T= TV') such that 

For an arbitrary measurable function v(l)= V(~E lO,TJ), the measurable control U (I) E U 
which takes the trajectory of the CCP (1.1) from the initial state k to the terminal set M* 
at the time T is chosen from the system of equations 

n&T-t) 9, (u (t), ” (t)) - m (t) = I p(T, G -Ku (t)) (--n), t E [0,&l 
0, tez:(e1, Tl 

where the time 8,~ IO, Tj is defined by the equality 

6, 

S P(~",T,-&u(z)) dc= 1 

0 

and m(t) is a measurable selector of M (T,f),t~lO,Tl. 
The rest of the proof is similar to the proof of the theorem. 

CoroZtary 2. Assume that the real parts of all eigenvalues of the restriction of the 
operator A to the subspace L are negative (i.e., R, + R,cMO) and that Condition 2* and 4" 
are satisfied for the CCP (1.1). Then the process (1.1) is completely controllable. 

Proof. By Condition 4O. 

Thus, values of T as large as desired exist such that 

At the same time, by the condition of the corollary, for the initial position e*E I?= 
there exists a number T, -= T, (3 < ‘d such that I/ JW~‘? 11 -< qiZ for all t>T,. 

Then the time T T (Z) > T, satisfying condition (1.13) is the required moment of 
guaranteed arrival of the trajectory of the CCP (1.1) from the initial position :' in the 
terminal set. This assertion is proved in the same way as Theorem 1. 

Let 

fiI (t. T) = inf a (t, t, s), g, (t, t) = ,$ a (6 7, S) (1.14) 
SES 

Condition 5’. Numbers E> 0, O>O exists such that the set 

is non-empty and unbounded and 
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Condition 5O obviously implies Condition 3*, and we thus have the following proposition. 

corotzary 3. If the CCP (1.1) satisfies Conditions 1"‘ 2O, and 5", then it is completely 
controllable. 

2. Consider a different approach to controllability analysis of the process (1.1). We 
define the multivalued mappings 

w It, V) = neA'q (U, v), w ftf =,B w G. 74 

condition 6O. OE W(t) for all t>O. 
Let 

Condition 7'. 

o (t, 2, u) = max {o > 0: u-2 f W (t, u)} 

p (t,.Z) = inf u (4 z, v), z E L, 2 f 0, t > 0 
vezv 

f2.l) 
(2.2) 

Note that (as in Condition 3*f if S, = 0, then we formally assume that part 2 of Con- 
dition I0 holds. 

Theorem 2. If M* = m j-M” is an affine manifold and Conditions lo, 6O, and 7" are 
satisfied, then the CCP 11.1) is completely controllable for an arbitrary vector rnER+ + $&. 

Proof. As in the proof of Theorem 1 note that for any initial position ZOER~ there 
is a unique decomposition P = z+" + aa + I-", x+O E R,, zoo E R,, 2-O e R_. 

By part 1 of Condition 7O, there exist E>O and 0>0 such that 

Using these ~~0, and 2-O we determine the time T, such that T,>t? and //K/]<E for 
all t> T,. Then from part 2 of Condition 7" it follows that the time T= ~(6) exists-such 
that 

where in the second inequality we have used the bound 

The time T (2") is the guaranteed time of arrival of the trajectory of the process (1.1) 
in the terminal set {ni -I- &fcl from the initial position 8. Let us prove this statement. 

Assuming that n_+ 0 and zm-%io, we obtain from the preceding argument 

l'-T, 

B (T - 7, nm - II,) dr = ‘5 p (7, xm - II,) dt > 1 (2.3) 

Tt 

i (2.4) 
T-T, 

For an arbitrary measurable function u (1) E r , we choose the measurable control 11 (t) Ez L 
(t E lo, 2% from the system of equations 

1 

lJ(T - 2, 3718- Ii,, u(z)) (nm- n,), ZE 10, ell 
,xN-~)~ (U (r), u (7)) c (r (T -TV -IL, v (t)) (--IL), r E [T - TI, td 

0, z‘ E (01, T - T,) U (01, 2’1 

where the tiaes 6, and 8*, which exist by inequalities (2.3) and (2.4), are determined from 
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the conditions 

6 

s o (T - ‘c, nm - II,, u (T)) dz = r o (T -T, -II_, u (T)) dT = 1 
0 T--T, 

Then we obtain 

nz CT) = n, + n, -t n_+ f,eA(T-r)q, (p (T), u (q)d7 = n++ no-t 

g.,-T,,,r n,. u (7)) d-c.(nm - n,) + n- + 

8, 

S 0 (T - ‘c, -n_, ” (7)) dr.(-n_) = nm 
T-T, 

To conclude the proof, note that the cases n_ = 0 and II,= XVI are analysed as in 

Theorem 1. 
Let 

Condition 8’. 

CoroZZary 4. If the CCP (1.1) satisfies Conditions lo, 6", and 8', then it is completely 

controllable. 

CoroZZary 5. Assume that the real parts of all eigenvalues of the restriction of the 
operator A to the subspace L are negative, and also that Condition 6" holds and 0 E int Af 
(int is the interior of a set). Then the CCP (1.1) is completely controllable. 

Proof. Since O~int M, then ~DcM for some s> 0. Then the multivalued mapping Jf(r,zi 

= G/&9 (t > 0) satisfies Condition 2O and for the function (1.3) corresponding to this mapping 
we have the inequality a(t,~, 8)> &V~(SE S). so that Condition 4" is satisfied. Thus, all the 

assumptions of Corollary 2 are satisfied, and the process (1.1) is completely controllable. 

Note that a proposition similar to Corollary 5 is given in /!I/ (for a somewhat less- 

general case). 

3. The conditions of complete controllability of the CCP (1.1) given in the previous 
sections ensure the arrival of the trajectory in the terminal set at a fixed time. This 

result strongly relies on analogues of Pontryagin's condition /a/ (Conditions 2" and 6"). Let 
us now consider the problem of the controllability of the process (1.1) with a free arrival 
time of the trajectory in the terminal set, abandoning Conditions 2" and 6'. 

Note that for the function fi(t,s) (2.2) to be well-defined, we do not necessarily need 

Condition 6O. It is sufficient that the function o(t,s,u) (2.1) (t>O, s=S, uEV) is 

defined. The function IJ (.) in turn may be well-defined although Condition 6' does not 

hold. 

Theorem 3. Assume that for the CCP (1.1) Condition 1" is satisfied, the function P (k s) 
(t > 0, SE S) is defined, Condition To is satisfied, and also nA.= An and OEM. Then 

the CCP (1.1) is completely controllable. 

Proof. By Condition 7" there exist E>O and l3>0 such that 

Using these E,O, and z_' we determine a time T, such that T,>O and [III_//< E for all 

t> T,. There exists a time T = T(C) such that 

& B(~~S)dt>,allcp(~,~)IIT~+~IIz,"ll T 
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Assuming that IL#O and II,#O, we choose the control us U(~EIO,TI) for an arbitrary 
measurable function v(t)~ V from the system of equations 

n&(T-t) q (u (0. LJ (0) = I 
o(T --t, -D,* u (0) (--n,), t f [O, Ol] 
(r (T - t, -IL. u (W k--n_), t 63 (01, 2.1 

where the time 8, is defined by the condition 

~,(,_,.-D,.,,+k=l 

Define the time 0, E ie,, Tl by the condition 

~U(T-HI_.~(~))&=* 
a* 

For this time we have 

which it was required to prove. The cases D_=O and II,=0 are proved similarly. 

CoroZZary 6. Assume that the CCP (1.1) satisfies the following conditions: 
1) A = hE, where E is the identity transformation in R”, h,<O; 

2) Of&f; 
3) there exists a number E >O such that 

msx {a> 0: c7.s E ncp(U,u)) > E, VvE V, ME S. 

Then the CCP (1.1) is completely controllable. 

4. Let US apply the reSUltS of the previous sections to study the linear pursuit problem 

x' = Bx + u, ~'-7 Cy + v, SE R", y c~ R", u E U, vg v 

The terminal set is M* = {(s, y)~ R" x Rn: 2 = y}, i.e., capture occurs when the phase 
coordinates are equal. 

Then 
Let us reduce the problem to the form (1.1). Let z1 = 5 - y, zz = y, 2 = (zl, z&J E R"". 

M* = M" = {(zl. z2): zr = O}, n (zr, z,) = z1 

&'V 

w ft) = e=w x e”V (-I. denotes the geometrical difference of sets /8/), m&z = egfx- ecty. 

Condition go. There exists a continuous function Y t% 0 < v (4 < 1, .d > 0, such that 

c: y (t) eB'U. 

that 

CoroZZary 7. Assume that Condition go holds and also 
1) there exist b > 0, c>O such that j\eBtIj < b, jlecrjj Qc for all t>O; 

2) II is a convex compactum and 0 lint U; 
3) lim sup y (t)< 1. 

Then 'p&suit from the initial positions x0 and y" may be terminated in a finite time. 

Proof. By the convexity of il and Condition 9', we have 

w (t) = es'U_ieCtIJf)(1 -_Y(t))estU, t> 0 

Condition 1 of the corollary ensures that Condition 1" is satisfied and also indicates 
the operator B does not have eigenvalues with a positive real part and all eigenvalues 
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with zero real part are simple, i.e., R" = R, (B) + R_ (I?). 

By Condition 2 of the corollary, the compacturn V includes a sphere ED; of radius 6>0 
Then by the definition of the functions h,(.) and k,(a) (2.5), we have 

hr (t) > (1 -Y (0) e r;,z, II eBts ‘1~ hz (4 > (1 -Y (t)) e s&J&,=1 “&% ” 

For some d>O we have 

and using Condition 3 of the corollary, we obtain 

(1 - Y(t)) E 
hl (I) > u&3 ,, -+O, liletf ha (t) > (1 - liFz:p y (t)) Ed > 0. 

This means that Condition 8O holds. We have thus shown that the conditions of Corollary 
4 are satisfied, which completes the proof. 

Corollary 8. Assume that the following conditions are satisfied: 
I) the real parts of all eigenvalues of the matrices B and C are negative; 

2) 0 E int W(t), t > 0, where I$,- (t) = eB'U i(_ &'V. 

Then pursuit from any initial positions may be terminated in a finite time. 

ThQOPQm 4. Assume that Condition 9" is satisfied and also: 
1) all eigenvalues of the matrices B and C have negative real parts; 
2) U is a convex compactum and the zero in the relative interior of U (i.e., the interior 

relative to the support of V /9/j; 
3) the system x' = Bx + u, u E G,, is completely controllable /lo, 11/; 
4) the continuous function y(.) is not identically 1. 
Then pursuit from any initial positions d7 and y' may be terminated in a finite time. 

Proof. By Condition 4 of the theorem, there exist numbers 6>0, cr>il> 0 such that 

1 - v (0 > 6 for all t E Ih, &I. We will prove the existence of a number e > I) such that 

eBrU dr (4.1' 

Assume the contrary. Then by Condition 2 there exists a vector $+O such that 

This condition is equivalent to the identity (eBT~,q) = 0 for all TE [t,,t,l and I, E G. 

Differentiating this identity k times at the point ~~(t~,t~), multiplying by (1 - +/kl (t E R) , 
and summing over k, we obtain 

for all PER and UE U. This identity contradicts Condition 3. Inclusion (4.1) thus holds. 
From Condition 1, for any rO,yo EP there exists a time T> ts such that 11 ~“.z’ - eCTyo II c 

~6. Comparing this with (4.1), we conclude that there exists a measurable function ME C(~E 

IO, TI) such that 

For an arbitrary measurable function v(t)= V, we choose the measurable control u(t)- u(z", 
Y’, v (I)) E 0 from the equation 

PT-1) U (t) = 
,c(Tm1) u (t) + &S(T-"q(~ - t). t E (T -f,, T - t,l 

&(=-‘) u (t), t E 10, T - ta) U (T - t,, 2’1 



which is solvable 

This control 
T: 
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by the inclusion 
as'LI~ec'V~(1--y(t))estU 

solves the problem of pursuit from the initial positions z" and y0 in time 

eBTzo - .CTyc + 6 1 eB(T-f)q (T -q di = 0, 

T--f. 

which it was required to prove. 

Remark 2. If we abandon the goal of exact hitting of the terminal set and consider the 
problem of the arrival of the trajectory of the CCP (1.1) in some (arbitrarily small) e- 
neighbourhood of the terminal set, then various conditions on the parameters of the CCP (1.1) 
may be simplified considerably. By the assertions of /12/, it is sufficient to require the 
corresponding conditions only for 'p (U, 0) (i.e., for the convex hull). If moreover the CCP 
(1.1) satifies the "small-game saddle point condition" /13/, the control u (.) can be 
constructed in the class of piecewise-constant positional controls /14/. 

Example 1. Consider a linear pursuit problem which does not satisfy the conditions of 
Corollary 7 and yet Theorem 2 applies: 

z' = Br + Fv, y’ = v; 5, y ES IS=; II E U, v E V (4.2) 

The operator eat defines rotation of R2 with the "velocity" (Z.X)-~ and FU is an ellipse 
with axes of length 1 and 2. Therefore W(t)=es*FU" V= 0 for all t> 0. 

If we change to polar coordinates (rY 9) in Hz and recall the equation of an ellipse in 
polar coordinates, we obtain the function (2.2): 

This function is 2n-periodic in t and is almost everywhere positive. Therefore Condition 
7O is satisfied for this function. Now applying Theorem 2, we obtain complete controllability 
of the process (4.2). 

ExwnpZe 2. ("The boy and the crocodile" /a/). 

zl’ = z2 - ~9, z2’ = u; zI, z2, u, u E R”, jj u 11 6 I, 11 o jl < I (4.3) 
M' = ((~1, za) E R” x R”: 11 q 11 < V,) 

Let 

1 O1 
rE[O,t-l] 

w(f,r)= z(z+l--~), rE(t--i,t] t>i 

We can verify that the set (1.2) is 
Q, (t, T) = ((t - T) u - 0 (t, z) M) % v = (t - T + 0 (t, r)/Z - 1) D 

Therefore, 0 E @((t,r) and the function (1.14) is ga(t,Q= t--r-l+l/p~(t,r). Therefore 
the function 

increases without limit as t goes to infinity. 
Note that this example does not satisfy Condition lo, but the "crocodile" (U) may stop 

for the time IIzdOII and then start pursuing the "boy" (D). We may thus take 
Corollaries 1 and 3, we obtain controllability of process (4.3). 

zLO= 0. Combining 
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Performing an analysis similar to that in /a/. we obtain that the function (2.2) in 
this example has the form 

Then, if a<O,b<o,p>o, and yl:a<o/b, Theorem 2 is applicable, and it guarantees com- 
plete controllability of process (4.4). 
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THE EXISTENCE AND STABILITY OF INVARIANT SETS OF DYNAMICAL SYSTEMS* 

A.A. BUROV and A.V. KARAPETYAN 

The possibility of using Lyapunov functions to construct invariant sets 
of dynamical systems is discussed. The investigations presented herein 
are based on certain ideas known from the literature /l-11/ and 
culminate in a generalization of Routh's Theorem and its modification 
/l-6, 12, 13/. 

1. Consider a dynamical system whose behaviour is described by ordinary differential 
equations of the following form: 

x' = f (x) (x E R”, f (x) E C': R”+ R”) 
(1.1) 

Assume that Eqs.(l.l) have first integrals which do not depend explicitly on time: 

U (x) = e (c E R*, U (x) E C*: R” - Rk) (1.2) 

'~PrikZ.Matem.Mekhan.,54,6,905-913,1990 


